स्टेशनरी और गैर-स्थिर प्रक्रियाओं का परिचय
वित्तीय संस्थान और निगम, साथ ही व्यक्तिगत निवेशक और शोधकर्ता, अक्सर आर्थिक पूर्वानुमान, स्टॉक मार्केट विश्लेषण, या डेटा के अध्ययन में वित्तीय समय श्रृंखला डेटा (जैसे परिसंपत्ति की कीमतें, विनिमय दर, जीडीपी, मुद्रास्फीति और अन्य व्यापक आर्थिक संकेतक) का उपयोग करते हैं। अपने आप।
लेकिन डेटा को परिष्कृत करना आपके स्टॉक विश्लेषण में इसे लागू करने में सक्षम होने के लिए महत्वपूर्ण है । इस लेख में, हम आपको दिखाएंगे कि डेटा बिंदुओं को अलग कैसे करें जो आपकी स्टॉक रिपोर्ट के लिए प्रासंगिक हैं।
कुकिंग रॉ डेटा
डेटा बिंदु अक्सर गैर-स्थिर होते हैं या उनके पास साधन, संस्करण और सहसंयोजक होते हैं जो समय के साथ बदलते हैं। गैर-स्थिर व्यवहार तीनों के रुझान, चक्र, यादृच्छिक चाल या संयोजन हो सकते हैं।
गैर-स्थिर डेटा, एक नियम के रूप में, अप्रत्याशित हैं और मॉडलिंग या पूर्वानुमान नहीं किया जा सकता है। गैर-स्थिर समय श्रृंखला का उपयोग करके प्राप्त किए गए परिणाम इस बात में सहज हो सकते हैं कि वे दो चर के बीच संबंध का संकेत दे सकते हैं जहां कोई मौजूद नहीं है। सुसंगत, विश्वसनीय परिणाम प्राप्त करने के लिए, गैर-स्थिर डेटा को स्थिर डेटा में बदलना होगा। गैर-स्थिर प्रक्रिया के विपरीत, जिसमें परिवर्तनशील विचरण होता है और एक माध्य होता है जो निकट नहीं रहता है, या समय के साथ लंबे समय तक चलने वाले माध्य में लौटता है, स्थिर प्रक्रिया एक स्थिर दीर्घकालिक माध्य के चारों ओर घूमती है और एक निरंतर विचरण स्वतंत्र होता है समय की।
गैर-स्थिर प्रक्रियाओं के प्रकार
इससे पहले कि हम गैर-स्थिर वित्तीय समय श्रृंखला डेटा के लिए परिवर्तन के बिंदु पर पहुंचें, हमें विभिन्न प्रकार के गैर-स्थिर प्रक्रियाओं के बीच अंतर करना चाहिए। यह हमें प्रक्रियाओं की बेहतर समझ प्रदान करेगा और हमें सही परिवर्तन लागू करने की अनुमति देगा। गैर-स्थिर प्रक्रियाओं के उदाहरण ड्रिफ्ट (धीमी गति से स्थिर परिवर्तन) और नियतात्मक रुझान (श्रृंखला के पूरे जीवन के लिए निरंतर, सकारात्मक या नकारात्मक, समय से स्वतंत्र) के साथ या बिना यादृच्छिक चलना है।
- शुद्ध रैंडम वॉक (Y t = Y t-1 + Random t ) रैंडम वॉक यह भविष्यवाणी करता है कि समय “t” का मान पिछली अवधि के मान के बराबर होगा और एक स्टोचैस्टिक (गैर-व्यवस्थित) घटक जो एक सफेद शोर है, जो मतलब means t स्वतंत्र है और “0” और विचरण “” “के साथ समान रूप से वितरित किया गया है। रैंडम वॉक को कुछ क्रम से एकीकृत प्रक्रिया भी कहा जा सकता है, एक इकाई रूट के साथ एक प्रक्रिया या एक स्टोकेस्टिक प्रवृत्ति के साथ एक प्रक्रिया। यह एक गैर-मतलब-पुनर्मूल्यांकन प्रक्रिया है जो सकारात्मक या नकारात्मक दिशा में या तो मतलब से दूर जा सकती है। एक यादृच्छिक चलने की एक और विशेषता यह है कि विचरण समय के साथ विकसित होता है और अनंत तक जाता है जैसे ही समय अनंत तक जाता है; इसलिए, एक यादृच्छिक चलने की भविष्यवाणी नहीं की जा सकती है।
- रैंडम वॉक विथ ड्रिफ्ट (Y t = α + Y t-1 + If t ) यदि रैंडम वॉक मॉडल भविष्यवाणी करता है कि समय पर “t” मान अंतिम अवधि के मान को एक स्थिर या बहाव (α), और एक के बराबर करेगा सफेद शोर शब्द ( ) t ), फिर प्रक्रिया एक बहाव के साथ यादृच्छिक चलना है। यह लंबे समय तक चलने वाले माध्य में वापस नहीं आता है और इसमें समय पर निर्भरता होती है।
- नियतात्मक प्रवृत्ति (Y t = α + + t + Often t ) अक्सर बहाव के साथ एक यादृच्छिक चलना एक नियतात्मक प्रवृत्ति के लिए उलझन में है। दोनों में एक बहाव और एक सफेद शोर घटक शामिल है, लेकिन एक यादृच्छिक चलने के मामले में समय “टी” का मूल्य पिछली अवधि के मूल्य (वाई टी -1 ) पर वापस आ जाता है, जबकि एक नियतकालिक प्रवृत्ति के मामले में यह फिर से संगठित होता है एक समय की प्रवृत्ति पर ()t)। नियतात्मक प्रवृत्ति के साथ एक गैर-स्थिर प्रक्रिया का एक मतलब है जो एक निश्चित प्रवृत्ति के आसपास बढ़ता है, जो निरंतर और समय से स्वतंत्र है।
- बहाव और नियतात्मक प्रवृत्ति के साथ यादृच्छिक चलना (Y t = α + Y t-1 + Driftt + is t ) एक अन्य उदाहरण एक गैर-स्थिर प्रक्रिया है जो बहाव घटक (α) और एक निर्धारक प्रवृत्ति (βt) के साथ यादृच्छिक चलना जोड़ती है । यह अंतिम अवधि के मूल्य, एक बहाव, एक प्रवृत्ति और एक स्टोकेस्टिक घटक द्वारा “टी” समय पर मूल्य निर्दिष्ट करता है।